The Impact of Resin as a Substitute for Cement (Polymer) and Ceramic as a Substitution of Fine Aggregate in High-Quality Concrete


  • Griff Greucenzky Departement of Civil Engineering, Mercu Buana University Jakarta
  • Agung Sumarno Departement of Civil Engineering, Mercu Buana University Jakarta
  • Syafwandi Departement of Civil Engineering, Mercu Buana University Jakarta
  • Agyanata Munthe Departement of Civil Engineering, Mercu Buana University Jakarta


Ceramic Waste, Polymer Concrete, Resin


Infrastructure is the entire structure and basic facilities needed by the community to support various community activities in daily life. The infrastructure consists of technical facilities, physical, systems, hardware, and software needed to provide services to the community and support the network structure so that the economic and social growth of the community can run well. Concrete is a material that is formed from mining products, therefore concrete has an impact on the environment. The research method used is an experiment using SNI 7656;2012 as a reference. This test was carried out by making 27 concrete samples measuring 15 x 30 cm, 9 samples of polymer concrete with 15% ceramic variation, 9 polymer concrete with 17% ceramic variation, and 9 conventional concrete as comparisons. Polymer concrete has a compressive strength of 31.53 MPa for the 15% ceramic variation and has the highest compressive strength of 32.22 MPa for the 17% variation. The compressive strength of polymer concrete with a variation of 15% is 5.69% stronger than normal concrete, while polymer concrete with a variation 17% is 11.36% higher than normal concrete.


Download data is not yet available.


Azizah, L. N. (2021). Pengertian Infrastruktur: Jenis, Fungsi, Manfaat, dan Peranannya. Gramedia Blog.

Blaga, A., & Beaudoin, J. J. (1985). Polymer Modified Concrete. National Research Council Canada, Division of Building Research.

Boer, H., & During, W. E. (2001). Innovation, what innovation? A comparison between product, process and organisational innovation. International Journal of Technology Management, 22(1/2/3), 83.

Dayaratnam, P., & Sarah, P. (2017). Design Of Reinforced Concrete Structure (5th ed.). Medtech.

Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2009). How to Design and Evaluate Research in Education (8th ed.). McGraw-Hill.

Huda, A. S., & Suprapto. (2013). Pengaruh Limbah Keramik Sebagai Pengganti Agregat Halus Terhadap Mutu Beton. 3(1).

Maryaningsih, N., Hermansyah, O., & Savitri, M. (2014). Pengaruh Infrastruktur Terhadap Pertumbuhan Ekonomi Indonesia. Buletin Ekonomi Moneter Dan Perbankan, 17(1), 62–98.

Mulyono, T. (2004). Teknologi Beton. Andi.

Ofori-Atta, K. (2017). The Budget Statement and Economic Policy. In Goverment of Ghana. Public Relations Office.

Pane, F. P., Tanudjaja, H., & Windah, R. S. (2015). Pengujian Kuat Tarik Lentur Beton Dengan Variasi Kuat Tekan Beton. Jurnal Sipil Statik, 3(5).

Patzer, G. L. (1996). xperiment-research Methodology in Marketing: Types and Applications. Greenwood Publishing Group.

Sanjaya, A. (2017). Pengaruh Penerapan Standar Akuntansi Pemerintahan, Sistem Pengendalian Intern, Sistem Akuntansi Keuangan Daerah, Dan Sumber Daya Manusia Terhadap Kualitas Laporan Keuangan Pemerintah Daerah Dengan Komitmen Organisasi Sebagai Pemoderasi (Studi Pada Skpd Ka. Jurnal Online Mahasiswa Fakultas Ekonomi Universitas Riau, 4(1).

Sugiyono. (2013). Metode Penelitian Kuantitatif, Kualitatif dan R&D. Alfabeta CV.

Tjokrodimuljo, K. (1992). Teknologi Beton. Fakultas Teknik UGM.

Van Gemert, D., Czarnecki, L., Maultzsch, M., Schorn, H., Beeldens, A., ?ukowski, P., & Knapen, E. (2005). Cement concrete and concrete–polymer composites: Two merging worlds. Cement and Concrete Composites, 27(9–10), 926–933.